- Дискретное программирование
-
Дискретное программирование [discrete programming] — раздел оптимального программирования, изучающий экстремальные задачи, в которых на искомые переменные накладывается условие целочисленности, а область допустимых решений конечна. Таким образом, здесь используется модель общей задачи математического программирования с дополнительным ограничением: x1, x2, …, xn — целочисленны.
В экономике огромное количество задач носит дискретный характер. Прежде всего это связано с физической неделимостью многих факторов и объектов расчета: например, нельзя построить 2,3 завода или купить 1,5 автомобиля. Все отраслевые задачи строятся в расчете на определенное количество предприятий или проектных вариантов. В планировании распространены типовые размеры предприятий, типовые мощности агрегатов — все это вносит дискретность в расчеты. Наконец, упомянем плановые показатели: годовые, месячные или суточные периоды — это дискретные, раздельные периоды, у каждого из которых есть свое начало и свой конец.
Дискретными являются задача о коммивояжере, задача о назначениях, задачи теории расписаний и другие.
Для решения задач Д.п. применяется ряд способов. Самый простой — решение обычной задачи линейного программирования с проверкой полученного результата на целочисленность и округлением его до приближенного целочисленного решения. Скажем, получилось из расчета, что надо построить 2,3 завода, выбираются либо два, либо три (что, разумеется, требует дополнительного анализа), точно так же не 1,5 автомобиля, а два или один. Часто в практических задачах искомые переменные принимают только два значения — единицу и нуль. (Их называют задачами булева линейного программирования.) Это означает, что данный вариант решения принимается или отвергается (строить или не строить шахту, приобретать или не приобретать машину и т.п.).
Иногда Д.п. называется целочисленным. Как видно из приведенных примеров, это не лишено основания, хотя некоторые математики считают такой термин неправильным (исходя из того, что, строго говоря, дискретное — это не обязательно целочисленное, например, ряд чисел — 1,1 — 1,2 — 1,3… — дискретный, но не целочисленный). Поэтому правильнее, очевидно, считать целочисленное программирование частным случаем дискретного.
Экономико-математический словарь: Словарь современной экономической науки. — М.: Дело. Л. И. Лопатников. 2003.