Дискретное программирование

Дискретное программирование

Дискретное программирование [discrete programming] — раздел оптимального программирования, изучающий экстремальные задачи, в которых на искомые переменные накладывается условие целочисленности, а область допустимых решений конечна. Таким образом, здесь используется модель общей задачи математического программирования с дополнительным ограничением: x1, x2, …, xn — целочисленны.

В экономике огромное количество задач носит дискретный характер. Прежде всего это связано с физической неделимостью многих факторов и объектов расчета: например, нельзя построить 2,3 завода или купить 1,5 автомобиля. Все отраслевые задачи строятся в расчете на определенное количество предприятий или проектных вариантов. В планировании распространены типовые размеры предприятий, типовые мощности агрегатов — все это вносит дискретность в расчеты. Наконец, упомянем плановые показатели: годовые, месячные или суточные периоды — это дискретные, раздельные периоды, у каждого из которых есть свое начало и свой конец.

Дискретными являются задача о коммивояжере, задача о назначениях, задачи теории расписаний и другие.

Для решения задач Д.п. применяется ряд способов. Самый простой — решение обычной задачи линейного программирования с проверкой полученного результата на целочисленность и округлением его до приближенного целочисленного решения. Скажем, получилось из расчета, что надо построить 2,3 завода, выбираются либо два, либо три (что, разумеется, требует дополнительного анализа), точно так же не 1,5 автомобиля, а два или один. Часто в практических задачах искомые переменные принимают только два значения — единицу и нуль. (Их называют задачами булева линейного программирования.) Это означает, что данный вариант решения принимается или отвергается (строить или не строить шахту, приобретать или не приобретать машину и т.п.).

Иногда Д.п. называется целочисленным. Как видно из приведенных примеров, это не лишено основания, хотя некоторые математики считают такой термин неправильным (исходя из того, что, строго говоря, дискретное — это не обязательно целочисленное, например, ряд чисел — 1,1 — 1,2 — 1,3… — дискретный, но не целочисленный). Поэтому правильнее, очевидно, считать целочисленное программирование частным случаем дискретного.


Экономико-математический словарь: Словарь современной экономической науки. — М.: Дело. . 2003.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "Дискретное программирование" в других словарях:

  • дискретное программирование — Раздел оптимального программирования, изучающий экстремальные задачи, в которых на искомые переменные накладывается условие целочисленности, а область допустимых решений конечна. Таким образом, здесь используется модель общей задачи… …   Справочник технического переводчика

  • ДИСКРЕТНОЕ ПРОГРАММИРОВАНИЕ — область математики, занимающаяся исследованием и решением экстремальных задач на конечных множествах. Пусть М={а 1, а 2, ..., а п}и f числовая функция, определенная на элементах множества М. Требуется найти элемент на к ром достигается абсолютный …   Математическая энциклопедия

  • дискретное программирование выборочных величин — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN discrete programming …   Справочник технического переводчика

  • Дискретное программирование — (дискретная оптимизация) раздел математического программирования. В противоположность задачам оптимизации с непрерывными переменными, переменные в задачах дискретного программирования принимают только дискретные значения, например, целочисленные …   Википедия

  • Математическое программирование —         математическая дисциплина, посвященная теории и методам решения задач о нахождении экстремумов функций на множествах, определяемых линейными и нелинейными ограничениями (равенствами и неравенствами).          М. п. раздел науки об… …   Большая советская энциклопедия

  • МАТЕМАТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ — математическая дисциплина, посвященная теории и методам решения задач о нахождении экстремумов функций на множествах конечномерного векторного пространства, определяемых линейными и нелинейными ограничениями (равенствами и неравенствами). М. п.… …   Математическая энциклопедия

  • ЦЕЛОЧИСЛЕННОЕ ПРОГРАММИРОВАНИЕ — раздел математического программирования, в к ром исследуется задача оптимизации (максимизации пли минимизации) функции нескольких переменных, связанных рядом уравнений и (или) неравенств и удовлетворяющих условию целочисленности (используются… …   Математическая энциклопедия

  • Целочисленное программирование — [integer programming] см. Дискретное программирование …   Экономико-математический словарь

  • Сигал, Израиль Хаимович — В Википедии есть статьи о других людях с такой фамилией, см. Сигал. Израиль Хаимович Сигал Дата рождения: 17 апреля 1938(1938 04 17) (74 года) Место рождения: Херсон, СССР Страна …   Википедия

  • МАКСИМИЗАЦИЯ И МИНИМИЗАЦИЯ ФУНКЦИЙ — конечного числа переменных задача поиска экстремума функции под этой задачей понимается: 1) нахождение 2) отыскание точек максимума или минимума, если достигаются на допустимом множестве (см. Максимум и минимум функции). 3) построение… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»